
Blockstack Desktop Wallet
Penestration Test

November 12th, 2020

For :
Mark Hendrickson @ Blockstack

By :
Peiyu Wang @ CertiK
peiyu.wang@certik.org

Minzhi He @ CertiK
minzhi.he@certik.org

mailto:peiyu.wang@certik.org
mailto:minzhi.he@certik.org

Confidentiality Statement
All information contained in this document is provided in confidence for the sole purpose of adjudication of the
document and shall not be published or disclosed wholly or in part to any other party without CertiK's prior permission
in writing and shall be held in safe custody. These obligations shall not apply to information that is published or
becomes known legitimately from some source other than CertiK.
All transactions are subject to the appropriate CertiK Standard Terms and Conditions. Certain information given in
connection with this proposal is marked “In Commercial Confidence”. That information is communicated in confidence,
and disclosure of it to any person other than with CertiK’s consent will be a breach of confidence actionable on the
part of CertiK.

Disclaimer
This document is provided for information purposes only. CertiK accepts no responsibility for any errors or omissions
that it may contain.
This document is provided without warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non-infringement. In no event shall CertiK be liable for any
claim, damages or other liability (either direct or indirect or consequential), whether in an action of contract, tort or
otherwise, arising from, out of or in connection with this document or the contents thereof.
This document represents our budgetary price proposal for the solution further described in this herein and is provided
for information and evaluation purposes only and is not currently a formal offer capable of acceptance.

Overview

Scope
At the start of the engagement, CertiK worked with Blockstack to identify the target and set the limits on the scope of
the test. A White Box type of testing approach was done where CertiK performed the test with the source code
available from the public GitHub repository.

Application Name Blockstack Desktop Wallet

Codebase GitHub Repository

Commit hash 9d2a2835777a649a14bdcd1bc36884f1bcc128dd

Audit Summary

Delivery Date Nov. 12, 2020

Method of Audit Dynamic Testing, Static Code Review

Consultants Engaged 2

Timeline Nov. 04, 2020 - Nov. 11, 2020

Vulnerability Summary

Total Issues 1

Total Low 1

Limitations
No major limitations were identified during the test.

Testing was performed during regular hours as well as off hours throughout the course of the test.

https://github.com/blockstack/stacks-wallet/actions/runs/355770668
https://github.com/blockstack/stacks-wallet/tree/release/stacking

Executive Summary
Blockstack engaged CertiK to perform an application penetration test for their desktop wallet. The main objective of
the engagement is to verify whether possible means for compromising the security of the users' wallets, identify its
weaknesses and provide recommendations to fix and improve its overall security posture. By auditing sources, CertiK
checked for implicit and more hidden ways for determined attackers seeking to break the BlockStack compound's
integrity. A special emphasis was also placed on the integration of the Electron framework and its hardening.

After a thorough review of the application, CertiK identified one low severity security issue. We were able to crash the
application by configuring the wallet to connect to a defective node we set up. Given the severity of the vulnerabilities
on the application, it is unlikely that a remote attacker can directly compromise the user wallet.

Even though Electron applications tend to be prone to "Critical"-level pitfalls, the Blockstack wallet managed to avoid
these and remain secure. The security posture of the project was judged as robust, and important components such
as wallet secret management were implemented with security in mind.

Findings

ID Title Severity Vulnerability Class Status

BLS-01 Client-side denial of
service with
defective node

Low Denial of service Open

BLS-01: Client-side denial of service with defective node

Severity: Low

Description
The application allows the user to add a custom node in the settings interface. The node will be used by the
application to communicate with the blockchain. Users are always under the threat of connecting to a malicious node
with a phishing attack from the attacker. During the test, we were interested in what can a malicious node do to the
wallet application. We found that a malicious can cause the application to crash.

Location
The "Settings" interface in the desktop wallet.

Impact
A malicious node can cause the application to crash, which negatively affects the user experience. Currently, the only
way for the user to recover the wallet is to manually delete the config.json file under the
"/Users/Username/Library/Application Support/Stacks Wallet" directly. Restart or re-install the application can't resolve
the issue.

Step to Reproduce
1. Setup a defective node with the code snippet in the proof of concept section. The code contains a simple flask
application.
2. Configure the wallet to connect to the defective node in the settings interface.
3. Notice the wallet crash after navigating to the send/receive interface.

Proof-of-Concept

Command to run the flask app:

from flask import Flask
import json
app = Flask(__name__)

@app.route('/<path:a>',methods=["GET","POST"])
def dos_handler(a=None,b=None):
 return json.dumps({"status":"ready"})

@app.route('/extended/v1/status',methods=["GET","POST"])
def pass_the_check():
 return json.dumps({"status":"ready"})

export FLASK_APP=app.py
flask run --host=0.0.0.0

Recommendation:
It's impossible to eliminate the situation that a user connects to a malicious blockchain node if the application allows
users to add custom code. The app should allow the user to change node when the node does not function correctly,
instead of crash completely.

Appendix – Methodology
CertiK uses a comprehensive penetration testing methodology which adheres to industry best practices and standards
in security assessments including from OWASP (Open Web Application Security Project), NIST, PTES (Penetration
Testing Execution Standard).

Below is a flowchart of our assessment process:

Coverage and Prioritization
As many components as possible will be tested manually. Priority is generally based on three factors: critical security
controls, sensitive data, and the likelihood of vulnerability.

Critical security controls will always receive the top priority in the test. If a vulnerability is discovered in the critical
security control, the entire application is likely to be compromised, resulting in a critical-risk to the business. For most
applications, critical controls will include the login page, but it could also include major workflows such as the checkout
function in an online store.

The Second priority is given to application components that handle sensitive data. This is dependent on business
priorities, but common examples include payment card data, financial data, or authentication credentials.

Final priority includes areas of the application that are most likely to be vulnerable. This is based on CertiK’ experience
with similar applications developed using the same technology or with other applications that fit the same business
role. For example, large applications will often have older sections that are less likely to utilize modern security
techniques.

Reconnaissance
CertiK gathers information about the target application from various sources depending on the type of test being
performed. CertiK obtains whatever information that is possible and appropriate from the client during scoping and
supplements it with relevant information that can be gathered from public sources. This helps provide a better overall
picture and understanding of the target.

Application Mapping
CertiK examines the application, reviewing its contents, and mapping out all its functionalities and components. CertiK
makes use of different tools and techniques to traverse the entire application and document all input areas and
processes. Automated tools are used to scan the application and it is then manually examined for all its parameters
and functionalities. With this, CertiK creates and widens the overall attack surface of the target application.

Vulnerability Discovery
Using the information that is gathered, CertiK comes up with various attack vectors to test against the application.
CertiK uses a combination of automated tools and manual techniques to identify vulnerabilities and weaknesses.
Industry-recognized testing tools will be used, including Burp Suite, Nikto, Metasploit, and Kali. Furthermore, any
controls in place that would inhibit the successful exploitation of a particular system will be noted.

Vulnerability Confirmation
After discovering vulnerabilities in the application, CertiK validates the vulnerabilities and assesses its overall impact.
To validate, CertiK performs a Proof-of-Concept of an attack on the vulnerability, simulating real world scenarios to
prove the risk and overall impact of the vulnerability.

Through CertiK’ knowledge and experience on attacks and exploitation techniques, CertiK is able to process all
weaknesses and examine how they can be combined to compromise the application. CertiK may use different attack
chains, leveraging different weaknesses to escalate and gain a more significant compromise.

To minimize any potential negative impact, vulnerability exploitation was only attempted when it would not adversely
affect production applications and systems, and then only to confirm the presence of a specific vulnerability. Any attack
with the potential to cause system downtime or seriously impact business continuity was not performed. Vulnerabilities
were never exploited to delete or modify data; only read-level access was attempted. If it appeared possible to modify
data, this was noted in the list of vulnerabilities below.

Immediate escalation of High or Critical Findings
If critical or high findings are found whereby application elements are compromised, client’s key security contacts will
be notified immediately.

Vulnerability Classes

Security Misconfiguration • Missing Security Headers
• Debugging Enabled

Information Disclosure • Directory Indexing
• Verbose Error Messages
• HTML Comments
• Default Content

Account Policy • Default / Weak Passwords
• Unlimited Login Attempts
• Password Reset
• Insufficient Session Expiration

Session Management • Session Identifier Prediction
• Session Hijacking
• Cross-Site Request Forgery
• Insufficient Session Expiration

Injection • SQL Injection
• Cross-Site Scripting
• LDAP Injection
• HTML Injection
• XML Injection
• OS Command Injection

Broken Access Control • Authentication Bypass
• Authorization Bypass
• Privilege Escalation

Application Resource Handling • Path Traversal
• Predictable Object Identifiers
• XML External Entity Expansion
• Local & Remote File Inclusion

Logic Flaws • Abuse of Functionality
• Workflow Bypass

Insufficient Cryptography • Weak Hashing Algorithms
• Weak Encryption Algorithms
• Hard Coded Cryptographic Key

Denial of Service • Server-side Denial of service
• Client-side Denial of service

Risk Assessment
The following risk levels categorize the risk level of issues presented in the report:

Risk Level CVSS Score Impact Exploitability

Critical 9.0-10.0 Root-level or full-system
compromise, large-scale
data breach

Trivial and straightforward

High 7.0-8.9 Elevated privilege access,
significant data loss or
downtime

Easy, vulnerability details
or exploit code are publicly
available, but may need
additional attack vectors
(e.g., social engineering)

Medium 4.0-6.9 Limited access but can still
cause loss of tangible
assets, which may violate,
harm, or impede the org's
mission, reputation, or
interests.

Difficult, requires a skilled
attacker, needs additional
attack vectors, attacker
must reside on the same
network, requires user
privileges

Low 0.1-3.9 Very little impact on an
org’s business

Extremely difficult, requires
local or physical system
access

Informational 0.0 Discloses information that
may be of interest to an
attacker.

Not exploitable but rather
is a weakness that may be
useful to an attacker
should a higher risk issue
be found that allows for a
system exploit

	Confidentiality Statement
	Disclaimer
	Overview
	Scope
	Audit Summary
	Vulnerability Summary
	Limitations

	Executive Summary
	Findings
	BLS-01: Client-side denial of service with defective node
	Severity: Low
	Description
	Location
	Impact
	Step to Reproduce
	Proof-of-Concept
	Recommendation:

	Appendix – Methodology
	Coverage and Prioritization
	Reconnaissance
	Application Mapping
	Vulnerability Discovery
	Vulnerability Confirmation
	Immediate escalation of High or Critical Findings

	Vulnerability Classes
	Risk Assessment

