
Stacks Chain Process, Clarity VM, SIP 001 and
SIP 007 Cryptography Review

Blockstack
November 23, 2020 – Version 1.0

Prepared for
Blockstack PBC

Prepared by
NCC Group Cryptography Services

Executive Summary
Synopsis
During February 2020, Blockstack engaged NCC Group
Cryptography Services to perform a security-focused
review consisting of 10 consultant days with two
consultants to review of the Stacks 2.0 implementation.
Two consultants were staffed on the project over the
course of 5 days. The scope of the project included
the blockchain implementation (excluding P2P aspects),
the authenticated index data structure (MARF) and its
integration with the underlying store, and finally the
Clarity VM implementation.

During the fall of 2020, Blockstack engaged NCC Group
Cryptography Services to perform a security-focused
review of blockstack-core, with focus on what’s
described in SIP-001 and SIP-007. In SIP-001, key
aspects of the Proof-of-Burn (PoB) concepts are laid
out, such as leader election via sortition, interaction
with the burnchain and burning pools. In SIP-007, key
aspects of the Proof-of-Transfer (PoX) blockchain are
described, including reward handling and delegation.
The scope was the sortition implementation, interaction
with Bitcoin and Bitcoin fork handling. On the kick-
off call, Blockstack suggested to look at the Clarity
contract governing the PoX rewards as well. One NCC
Group consultant worked on the project for 5 days.
Blockstack answered consultant’s questions in Slack.
Testing was performed by manual source code review
and by running unit tests.

Scope
Blockchain audit
The primary focus of testing was on code paths around:

• Transaction validation: signature validation, transac-
tion malleability, replay

• Block validation: burnchain registration and commit-
ment, block/microblock binding, block header field
validation

More generally, Stacks 2.0 being a from-scratch
blockchain implementation, some of the important
attack vectors include:

• Netsplit via block hash poisoning
• Netsplit due to multiple client implementations
• Transaction malleability issues
• Integer underflow/overflow
• Merkle tree implementation issues
• Storage exhaustion in block or transaction processing
• CPU exhaustion in block or transaction processing

MARF audit
Regarding the MARF review, NCC Group reviewed code
paths with focus on the following vectors:

• Construction of inappropriate proofs, e.g. provers
omitting child nodes

• Incorrect validation of proofs by verifiers
• Denial of service vectors in the construction and
validation of proofs

NCC Group performed a mix of static and dynamic
analysis of MARF to identify and exploit failures to
authenticate data indexed by MARF; the latter by
expanding some of the existing unit test cases with
invalid or unexpected input.

In Phase 2, NCC Group’s evaluation included:

• Sortition implementation: Proof-of-Burn leader
election powered by a Verifiable Random Function
(VRF), as described in SIP-001

• Bitcoin interactions: Stacks blockchain interactions
with the burnchain, including burnchain forks edge
case handling

• PoX Clarity Smart Contract: Key elements of SIP-
007’s logic are handled inside the Clarity PoX contract
and blockchain-core calls out to the contract.

Testing Methodology and Key Findings
Phase 1 findings included the following:

• Proof VerificationMayNot Check the Root Hash: An
attacker may conceal the actual map value of a map
key for a given root hash in a proof.

• Discrepancy Between SIP 005 and Implementation:
If a reimplementation of the Stacks blockchain client
follows SIP 005, it risks being forked off the main
network.

• Block and Transaction Encoding Tolerates Arbitrary
Suffix: If, in the P2P layer, messages are not
deserialized and then serialized again before being
stored or forwarded to other nodes, DoS concerns
may arise.

Testing methodology consisted of mapping various
aspects of SIP-001 and SIP-007 to the code base, and
while doing so, reviewing for:

• Usage of panicking functions
• Integer underflow/overflow issues
• Logical and edge-case handling problems

No serious issues on those tracks have been found. The
Phase 2 review noted the following:

2 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

• Reward Address Duplication and SIP-007 Inaccuracy:
When it comes to PoX reward address computation,
SIP-007 diverges from the implementation, resulting
in misinformation on how rewards work and compli-
cate a possible re-implementation.

• SEED_NORM Calculation Does Not Follow SIP 001: SIP
001 readers will be misinformed on how the SEED_
NORM quantity (used to pick the sortition winner) is
computed. Since SIP-001 is descriptive in nature, it is
not likely that such a discrepancy would creep into an
actual re-implementation.

Limitations
The Clarity contract came at the end and while interac-
tions with the contract (from blockstack-core) were
reviewed, there was not sufficient time to review the
contract itself as a standalone piece as the review was
tightly scoped.

Recommendation
Consider performing a separate independent review of
the PoX Clarity Contract, with focus on logical issues
such as unintended edge-case handling and execution
correctness.

3 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

finding:b047e8
finding:112e9b

Dashboard

Finding Breakdown
Critical issues 0

High issues 1

Medium issues 2

Low issues 2

Informational issues 2
Total issues 7

Category Breakdown
Cryptography 3

Denial of Service 2

Other 2

Component Breakdown
Clarity VM 2

General 1

MARF 1

SIP 001 1

SIP-007 1

Transaction validation 1

Key
Critical High Medium Low Informational

4 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 16.

Title Status ID Risk
Proof Verification May Not Check the Root Hash New 001 High
Unbounded Recursion in Contract Parser Leads To Crash New 004 Medium
Denial of Service via ClarityVM Process Thrashing New 005 Medium
Discrepancies Between SIP 005 and Implementation New 002 Low
Reward Address Duplication and SIP-007 Inaccuracy Reported 007 Low
Block and Transaction Encoding Tolerates Arbitrary Suffix New 003 Informational

SEED_NORM Calculation Does Not Follow SIP 001 Reported 006 Informational

5 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Finding Details
Finding Proof Verification May Not Check the Root Hash

Risk High Impact: High, Exploitability: Medium

Identifier NCC-BLSK002-001

Status New

Category Cryptography

Component MARF

Location proofs.rs:921

Impact An attackermay conceal the actualmap value of amap key for a given root hash in a proof. The
impact and exploitability ratings are contingent on a number of factors including the nature
of the data being stored and type of smart contract; it is envisaged that these may vary from
low to high.

Description AMerklized Adaptive Radix Forest1 (MARF) is an authenticated index data structure for encod-
ing a cryptographic commitment to the blockchain state. The MARF structure is part of the
consensus logic and gives light clients the ability to verify that a particular key has a particular
value, given the MARF’s cryptographic hash.

The chainstate::stacks::index::proofsmodule implements a verify_proof()2method
for the TrieMerkleProof structure to verify that a given a map value and the root hash from
which a proof was generated is consistent with the passed root hash value.

At the aforementioned code path of the verify_proof() method, the application has vali-
dated that the given map value matches the value in the given proof, among other controls.
However, it has not checked whether the given root hash valuematches the given proof’s root
hash value before returning that it has successfully verified the proof. This is illustrated in the
code snippet below:

trace!("shunt proof head hash: {:?}", &trie_hash);

i += 1;
if i >= proof.len() {

// done -- no further shunts
return true;

}

If an attacker can generate a proof that matches the above condition, then they may be able
to lie about the actual map value. NCC Group was able to hide the most up to date map value
in a unit test case by generating a proof for the queried value for an old block (the queried
value was correct in that old block but was changed in later blocks) and presenting this proof
to the verifying function. The unit test case is documented in Appendix D on page 21.

Recommendation Ensure that the aforementioned code compares the provided root hash value with the pro-
vided proof’s root hash value and returns false if they do not match.

1https://github.com/blockstack/blockstack-core/blob/develop/sip/sip-004-materialized-view.md
2https://github.com/blockstack/blockstack-core/blob/b2e456cef16e943cd5cbf2c0173eabf152a11659/src/chainsta
te/stacks/index/proofs.rs#L855

6 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/blockstack-core/blob/b2e456cef16e943cd5cbf2c0173eabf152a11659/src/chainstate/stacks/index/proofs.rs#L921
https://github.com/blockstack/blockstack-core/blob/develop/sip/sip-004-materialized-view.md
https://github.com/blockstack/blockstack-core/blob/b2e456cef16e943cd5cbf2c0173eabf152a11659/src/chainstate/stacks/index/proofs.rs#L855
https://github.com/blockstack/blockstack-core/blob/b2e456cef16e943cd5cbf2c0173eabf152a11659/src/chainstate/stacks/index/proofs.rs#L855

Finding Unbounded Recursion in Contract Parser Leads To Crash

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-BLSK002-004

Status New

Category Denial of Service

Component Clarity VM

Location • ExpressionIdentifier
• DefinitionSorter
• TraitsResolver
• SugarExpander

Impact An attacker can send poisonous transactions and crash arbitrary nodes on the network.

Description Processing a transaction with a new smart contract payload involves building an AST tree
out of the user-supplied contract code. The vm::ast::build_ast function performs several
passes over the supplied code and gradually builds the ContractAST struct:

pub fn build_ast(contract_identifier: &QualifiedContractIdentifier, source_code:
&str) -> ParseResult<ContractAST> {
let pre_expressions = parser::parse(source_code)?;
let mut contract_ast = ContractAST::new(contract_identifier.clone(),

pre_expressions);
ExpressionIdentifier::run_pass(&mut contract_ast)?;
DefinitionSorter::run_pass(&mut contract_ast)?;
TraitsResolver::run_pass(&mut contract_ast)?;
SugarExpander::run_pass(&mut contract_ast)?;
Ok(contract_ast)

}

All four run_pass invocations potentially lead to unbounded recursion. A malicious network
participant may construct contract code which will crash nodes, depending on their stack size
and depending on any future limitation on transaction size. For instance, inside Expressi
onIdentifier, the inner_relabel function, which relabels the parsed expression tree is
recursive and does not limit recursion depth. In case of ExpressionIdentifier::run_pass
, less than 10000 characters in contract code were sufficient to cause a stack overflow.

It should be noted that the MAX_CALL_STACK_DEPTH check does not mitigate this issue, as
the issue happens during the static analysis phase.

Reproduction Steps Generate the AST tree for the (((...))) expression and process it:

python -c "print('(' * 5000);" > xz.clar

python -c "print(')' * 5000);" >> xz.clar

clarity-cli check xz.clar

Recommendation Introduce recursion depth bounds inside libraries above, and return an error if the pre-set
recursion depth is surpassed.

7 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/blockstack-core/blob/2717687d/src/vm/ast/expression_identifier/mod.rs#L13
https://github.com/blockstack/blockstack-core/blob/b6095092/src/vm/ast/definition_sorter/mod.rs#L105
https://github.com/blockstack/blockstack-core/blob/b6095092/src/vm/ast/traits_resolver/mod.rs#L145
https://github.com/blockstack/blockstack-core/blob/b6095092/src/vm/ast/sugar_expander/mod.rs#L54
https://github.com/blockstack/blockstack-core/blob/b6095092/src/chainstate/stacks/db/transactions.rs#L425
https://github.com/blockstack/blockstack-core/blob/b6095092/src/vm/ast/mod.rs#L29
https://github.com/blockstack/blockstack-core/blob/b6095092/src/vm/mod.rs#L104

Finding Denial of Service via ClarityVM Process Thrashing

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-BLSK002-005

Status New

Category Denial of Service

Component Clarity VM

Location Execution environment memory handling

Impact If the network accepts a specially crafted contract, a call to the contract’s exposed function
would get the node to start thrashing and eventually crash.

Description Amaximum limit on the size of a list or buffer in Clarity is currently 1MB. A small smart contract
can fill a 1MB buffer by duplicating an initial variable value. Next, the variable holding 1MB of
data can be copied n times. For instance:

(define-data-var XZ (buff 1048576) "a")

(var-set XZ (concat (var-get XZ) (var-get XZ)))

(var-set XZ (concat (var-get XZ) (var-get XZ)))

(var-set XZ (concat (var-get XZ) (var-get XZ)))

(var-set XZ (concat (var-get XZ) (var-get XZ)))

[...]
(var-set XZ (concat (var-get XZ) (var-get XZ)))

(var-set XZ (concat (var-get XZ) (var-get XZ)))

(print (len (var-get XZ))) ; prints 1024*1024 = 1048576

(define-data-var var1 (buff 1048576) (var-get XZ))

(define-data-var var2 (buff 1048576) (var-get XZ))

[...]
(define-data-var varN (buff 1048576) (var-get XZ))

While this issue may be remediated by enforcing a limit on transaction size (the PoC contract
was less than 50 kilobytes) or by estimating the transaction’s cost before execution, it would
be prudent to add a sanity check on the amount of memory the runtime can allocate.

8 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Recommendation In addition to a particular limiting the size of memory values, enforce a limit on the overall
memory that a runtime can hold.

9 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Finding Discrepancies Between SIP 005 and Implementation

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-BLSK002-002

Status New

Category Other

Component Transaction validation

Location https://github.com/blockstack/blockstack-core/blob/222f545b/src/chainstate/stacks/mod.rs#L
201

https://github.com/blockstack/blockstack-core/blob/222f545b/src/chainstate/stacks/auth.rs#
L249

Impact If a reimplementation of the Stacks blockchain client follows SIP 005, it risks being forked off
the main network.

Description In SIP 005, in the Transaction Authorization section, the authorization type value is defined to
be 0x03 and 0x04 for standard and sponsored transactions, respectively. In the implementa-
tion, the values 0x04 and 0x05 are in fact used:

pub enum TransactionAuthFlags {
// types of auth
AuthStandard = 0x04,
AuthSponsored = 0x05,

}

Another source of possible confusion is in the context of multi-sig transactions. When vali-
dating a multi-sig transaction, the number of signatures inside the mentioned vector is lim-
ited to 65535 (note the usage of u16::checked_add in the snippet below), which could be
considered an anti-DoS measure. However, the number of public keys in the same vector
is unlimited and is only bounded by any higher-level transaction size eventual limit. See the
verify function that applies to multi-sig transactions and observe the usage of u16::check
ed_add(1) only in the case a signature is processed:

for field in self.fields.iter() {
let pubkey = match field {

TransactionAuthField::PublicKey(ref pubkey) => {
if !pubkey.compressed() {

have_uncompressed = true;
}
pubkey.clone()

},
TransactionAuthField::Signature(ref pubkey_encoding, ref sigbuf) => {

if *pubkey_encoding == TransactionPublicKeyEncoding::Uncompressed {
have_uncompressed = true;

}

let (pubkey, next_sighash) =
TransactionSpendingCondition::next_verification(&cur_sighash,
cond_code, self.fee_rate, self.nonce, pubkey_encoding, sigbuf)?;

cur_sighash = next_sighash;

10 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/blockstack-core/blob/222f545b/src/chainstate/stacks/mod.rs#L201
https://github.com/blockstack/blockstack-core/blob/222f545b/src/chainstate/stacks/mod.rs#L201
https://github.com/blockstack/blockstack-core/blob/222f545b/src/chainstate/stacks/auth.rs#L249
https://github.com/blockstack/blockstack-core/blob/222f545b/src/chainstate/stacks/auth.rs#L249
https://github.com/blockstack/blockstack-core/blob/master/sip/sip-005-blocks-and-transactions.md#transaction-authorization

num_sigs = num_sigs.checked_add(1).ok_or(net_error::VerifyingError(
"Too many signatures".to_string()))?;

pubkey
}

};
pubkeys.push(pubkey);

}

While the limit on the number of signatures should be definitely mentioned in SIP 005, it is
unclear whether the original consensus rule was intended to leave the number of public keys
unbounded. Either way, it would make sense to discuss this rule as well in SIP 005.

Finally, as discussed with the Blockstack team, the rolling hash multi-sig transaction validation
did not yet make it into SIP 005.

Recommendation Correct either the documentation or the implementation when it comes to authorization type
values. As for the limit on the multisig length (in terms of the number of both public keys and
signatures) discuss this constraint in SIP 005.

11 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Finding Reward Address Duplication and SIP-007 Inaccuracy

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-BLSK002-007

Status Reported

Category Cryptography

Component SIP-007

Location LeaderKeyRegisterOp::parse_data

Impact When it comes to PoX reward address computation, SIP-007 diverges from the implemen-
tation, resulting in misinformation on how rewards work and complicating a possible re-
implementation.

Description According to the “Leader Block Commits” section of SIP-007:

a. PoX recipients are chosen as described in “Stacking Consensus Algorithm”: ad-
dresses are chosen without replacement, by using the previous burn block’s sorti-
tion hash, mixed with the previous burn block’s burn header hash as the seed for
the ChaCha12 pseudorandom function to select M addresses. b. The leader block
commit transaction must use the selected M addresses as outputs [1, M] That is,
the second through (M+1)th output correspond to the select PoX addresses. The
order of these addresses does not matter. Each of these outputs must receive the
same amount of BTC. c. If the number of remaining addresses in the reward set
N is less than M, then the leader block commit transaction must burn BTC: i. If
N > 0, then the (N+2)nd output must be a burn output, and it must burn (M-N) *
(the amount of BTC transfered to each of the first N outputs) ii. If N == 0, then the
2nd output must be a burn output, and the amount burned by this output will be
counted as the amount committed to by the block commit

The implementation fixes M to 1 and does away with what’s described in the paragraph above.
In particular, the PoX address is not necessarily the second address in the transaction and
the cases where the reward set N is less than M does not apply. In addition, replacement was
not identified in the code, as such, at the moment of writing, it appears that addresses are
replaced and can be duplicated over blocks in the same reward cycle.

for (ix, output) in outputs.into_iter().enumerate() {
// only look at the first OUTPUTS_PER_COMMIT outputs
// or until first _burn_ output
if ix >= OUTPUTS_PER_COMMIT {

break;
}
if output.address.is_burn() {

burn_fee.replace(output.amount);
break;

} else {
// all pox outputs must have the same fee
if let Some(pox_fee) = pox_fee {

if output.amount != pox_fee {
warn!("Invalid commit tx: different output amounts for di

fferent PoX reward addresses");
return Err(op_error::ParseError);

}

12 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

} else {
pox_fee.replace(output.amount);

}
commit_outs.push(output.address); }}

Recommendation Redo the Leader Block Commits section in the SIP to correspond exactly to what’s imple-
mented by the code (M=1, the PoX transaction is not necessarily the second one, remove
unimplemented discussion around N<M etc).

13 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Finding Block and Transaction Encoding Tolerates Arbitrary Suffix

Risk Informational Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-BLSK002-003

Status New

Category Other

Location net/codec.rs

Impact If messages are not deserialized and then serialized again before being stored or forwarded
to other nodes, DoS concerns may arise.

Description Stacks 2.0 uses a customserialization scheme, akin to Bitcoin’s object serialization/deserialization
method. For instance, a StacksTransaction deserialization is as follows:

fn deserialize(buf: &Vec<u8>, index_ptr: &mut u32, max_size: u32) ->
Result<StacksTransaction, net_error> {
let mut index = *index_ptr;

let version_u8 : u8 = read_next(buf, &mut index, max_size)?;
let chain_id : u32 = read_next(buf, &mut index, max_size)?;
let auth : TransactionAuth = read_next(buf, &mut index, max_size)?;
let anchor_mode_u8 : u8 = read_next(buf, &mut index, max_size)?;
let post_condition_mode_u8 : u8 = read_next(buf, &mut index, max_size)?;
let post_conditions : Vec<TransactionPostCondition> = read_next(buf, &mut

index, max_size)?;
let payload : TransactionPayload = read_next(buf, &mut index, max_size)?;

[...]

If the buf variable contains data after TransactionPayload, this data will be ignored. If the
future P2P layer (currently out of scope) does not return an error on existence of suffix data,
nodes will tolerate blockchain messages with junk suffixes. This was a cause of CVE-2013-
4627, since Bitcoin also had an optimization which saved and forwarded serialized data as
opposed to deserializing and then serializing them before storage/validation.

More context on the Bitcoin issue: in 2013 the Bitcoin network was attacked using a re-
lated vector3 which became CVE-2013-4627.4 At the time, the Bitcoin nodes would broadcast
messages as they were received from the network, without re-serializing them first. Due to
Bitcoin’s custom transaction serialization scheme, a transaction message could contain data
after the serialized transaction, which the Bitcoin client would ignore, but at the same time
save the full message and broadcast it in that form. See also this StackExchange question.5

Recommendation Blockstack may consider rejecting network messages with suffix after parsed serialized ob-
jects and this may be handled on the P2P network processing layer.

3https://bitcointalk.org/index.php?topic=259101.msg2763875#msg2763875
4https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2013-4627
5Serialized transaction bigger than the actual transaction object? https://bitcoin.stackexchange.com/questions/83
485/serialized-transaction-bigger-than-the-actual-transaction-object-cve-2013-4627

14 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://bitcointalk.org/index.php?topic=259101.msg2763875#msg2763875
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2013-4627
https://bitcoin.stackexchange.com/questions/83485/serialized-transaction-bigger-than-the-actual-transaction-object-cve-2013-4627
https://bitcoin.stackexchange.com/questions/83485/serialized-transaction-bigger-than-the-actual-transaction-object-cve-2013-4627

Finding SEED_NORM Calculation Does Not Follow SIP 001

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-BLSK002-006

Status Reported

Category Cryptography

Component SIP 001

Location SortitionHash::mix_burn_header

SortitionHash::mix_VRF_seed

Impact SIP 001 readers will bemisinformed on how the SEED_NORM quantity (used to pick the sortition
winner) is computed.

Description In the pseudo-code listed in SIP 001, the select_block function computes the SEED_NORM
as follows:

SEED_NORM = num(hash(SEED || BURN_BLOCK_HEADER.nonce)) / TOTAL_BURNS

The implementation, on the other hand, computes it roughly as follows:

sha256(sha256(prev_sortition_hash || burn header hash) || VRF seed)

In particular, the previous sortition hash is first mixed with the burn block header hash. Next,
the resulting blob is mixed with the VRF seed, before being converted to a 256-bit representa-
tion. Finally, the interval corresponding to the obtain number is what determines the winner:

let index = sortition_hash.mix_VRF_seed(VRF_seed).to_uint256();
for i in 0..dist.len() {

if (dist[i].range_start <= index) && (index < dist[i].range_end) {
debug!(

"Sampled {}: sortition index = {}",
dist[i].candidate.block_header_hash, &index

);
return Some(i);

}
}

Recommendation If SIP-001 cannot be corrected at this point, consider publishing an erratum on SIPs and
mention this discrepancy.

15 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/burn/sortition.rs#L276
https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/burn/sortition.rs#L115

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

16 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

17 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

Appendix B: Project Contacts
The team from NCC Group has the following primary members:

• Aleksandar Kircanski — Consultant
aleksandar.kircanski@nccgroup.com

• Gérald Doussot — Consultant
gerald.doussot@nccgroup.com

• Javed Samuel — Cryptography Services Director
javed.samuel@nccgroup.com

The team from Blockstack has the following primary members:

• Diwaker Gupta — Blockstack
diwaker@blockstack.com

• Jude Nelson — Blockstack
jude@blockstack.com

• Ludovic Galabru — Blockstack
ludovic@blockstack.com

18 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

mailto:aleksandar.kircanski@nccgroup.com
mailto:gerald.doussot@nccgroup.com
mailto:javed.samuel@nccgroup.com
mailto:diwaker@blockstack.com
mailto:jude@blockstack.com
mailto:ludovic@blockstack.com

AppendixC: SIP-001 andSIP-007 TestingMethodology

Over the 5-day course of the review, NCC consultant’s primary testing strategy was to match the code against the SIPs,
to rely on unit test modification (where needed) and to look for:

Intended behavior vs. actually implemented behavior: If the (assumed) implementation’s intent should behave is
different than what the implementation actually does, this would clearly be an issue. Typically this happens in edge-
cases, either in user-controllable input or, more interestingly, in edge-case state. For example, handle_new_burnchain
_blockprocessingmay need to catch upwith a number of burnchain blocks and the to-be-processed burn chain blocks
may be describing a degenerate sequence of Stacks blocks (e.g. half-valid Stacks block information, high number of
Stacks forks, etc).

Usage of panickingmethods: Panicking checks such as expect and unwrap are sprinkled throughout the code to test
for invariants whose negation would signal a corrupt state. NCC Group looked for an instance where a non-invariant
slipped through and is checked by a panicking statement. For instance, tuple_to_pox_addr will panic if the tuple
(previously retrieved from the contract) has an invalid version, however, the contract itself contains an address version
check.

Integer underflow and overflow: Unsafe arithmetic, e.g., when user burn amounts inside a burn chain block are
accumulated, plain addition is used (this is a non-issue due to u128 size vs. Satoshi amount accumulation).

Observations
The sortition procedure includes creating a distribution (interval decomposition based on user burns) and identify-
ing the winning sub-interval. In SIP-001, the sub-interval is computed using the SEED_NORM pseudo-random value. As
discussed in [finding:112e9b], the SEED_NORM is computed differently than what’s described by SIP-001. An erratum
for SIP 001 (which can be included in one of the next SIPs) can be published to correct this issue.

Computing the distribution relies on fixed-point arithmetic. This is not mentioned in SIP-001 and may be mentioned
in the erratum for completeness purposes.

While user burns are discussed in the Burning Pools section of SIP-001, the content of the user burn transactions is
not mentioned in the Election Protocol section, even though user burns are an integral part of the election.

Reward address set computation is unique in the sense that even though it is implemented on the core blockchain
layer, it calls out to the layer above itself (the smart contract layer). It does so by using a fixed boot smart contract
address and by concatenating Clarity statements, such as:

fn get_balance(peer: &mut TestPeer, addr: &PrincipalData) -> u128 {
let value = eval_at_tip(

peer,
"pox",
&format!("(stx-get-balance '{})", addr.to_string()),

);

If addr.to_string() could contain arbitrary characters, Clarity statement injection would be possible. However,
since PrincipalData serialization cannot contain special Clarity characters, this is non-exploitable. If Clarity contracts’
exposed functions can be referenced at the core level (e.g., via a dynamic list of active contracts), such an approach
would roughly be similar to SQL prepared statements as opposed to SQL statement concatenation and wouldmitigate
any injection potential in future revisions of the code.

As discussed with the Blockstack team, reward address sampling has been refactored and this resulted in the imple-
mentation diverging from SIP-007, as described in [finding:b047e8]. Of note is that SIP-007 explains that addresses
are sampled with replacement, whereas replacement code was not identified in blockstack_lib, which opens up the
question of whether the final implementation should perform sampling with replacement or without replacement.

19 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/stacks/boot/mod.rs#L242
https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/stacks/boot/pox.clar#L341
https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/stacks/boot/pox.clar#L341
https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/burn/distribution.rs#L223
https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/burn/distribution.rs#L238

Descriptive observations
In the distribution and sortition calculation, two relevant methods are make_distribution which transforms burns
into an interval decomposition and select_winning_block which uses the interval decomposition to perform a
random weighted sampling of the winning block.

As for anchor block identification, to ensure that a large fraction of Stacks mining power received the anchor block,
SIP 007 introduces a method for determining the anchor block. On the SIP-007 side, given a recent window of w
Bitcoin blocks, SIP 007’s find_anchor_block inspects a sub-graph of the Stacks chain DAG. On the one hand, in a
non-degenerate case, the sub-graph pertaining to the PREPARE phase may be a single chain. On the other hand, the
PREPARE sub-graph could be set of independent DAGs (connected by Stacks blocks outside the w-window picture). If
one walks from all the leaf PREPARE sub-graph nodes towards the root of the chain, find_anchor_block identifies
the most visited block, assuming this number is strictly greater than w/2. In such a case, there can only exist one such
node. This node is the anchor block.

Up to vagueness inherent to pseudo-code, the get_chosen_pox_anchor function closely follows the SIP-007 specifi-
cation. There is one optimization in the code that is not mentioned in SIP-007: finding nodes’ ancestors outside the
window (the last_ancestor_of_block_before function) implemented statefully in the code. During the nodewalk, if
a Bitcoin block that has already been processed is encountered, the ancestor is pulled from the memoized_candidates
hash map. This optimization makes processing linear complexity and does not appear to introduce any unintended
behavior.

20 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/burn/distribution.rs#L65
https://github.com/blockstack/stacks-blockchain/blob/3a69a8d396791d23888ffd6af90e4232a1bf4d41/src/chainstate/burn/sortition.rs#L141

AppendixD:HidingMapValue fromProofUnit Test Case

The test case below illustrates how one can abuse the proof verification method to hide the current map value, as
described in finding NCC-BLSK002-001 on page 6. Add this test case at the end of the proof.rs file and run with
the cargo test chainstate::stacks::index::proofs::test::ncc_verifier_catches_stale_proof --
--nocapture command in a terminal shell.

The proof verification wrongly returns that it validated value old_v is in block 5 root hash, while it is actually set to
another_v.

#[test]
fn ncc_verifier_catches_stale_proof() {

// use std::env;
// env::set_var("BLOCKSTACK_TEST_PROOF_ALLOW_INVALID", "1");

let path = "/tmp/ncc_rust_marf_verifier_catches_stale_proof".to_string();
match fs::metadata(&path) {

Ok(_) => {
fs::remove_dir_all(&path).unwrap();

},
Err(_) => {}

};

let mut m = MARF::from_path(&path, None).unwrap();

let sentinel_block = TrieFileStorage::block_sentinel();
let block_0 = BlockHeaderHash([0u8; 32]);
let block_1 = BlockHeaderHash([1u8; 32]);
let block_2 = BlockHeaderHash([2u8; 32]);
let block_3 = BlockHeaderHash([3u8; 32]);
let block_4 = BlockHeaderHash([4u8; 32]);
let block_5 = BlockHeaderHash([5u8; 32]);

let k1 = "K1".to_string();
let old_v = "OLD".to_string();
let new_v = "NEW".to_string();
let new_new_v = "NEWNEW".to_string();
let new_new_new_v = "NEWNEWNEW".to_string();
let another_v = "ANOTHERV".to_string();

m.begin(&sentinel_block, &block_0).unwrap();
m.commit().unwrap();

// Block #1
m.begin(&block_0, &block_1).unwrap();
let r = m.insert(&k1, MARFValue::from_value(&new_v));
let (_, root_hash_1) = Trie::read_root(m.borrow_storage_backend()).unwrap();
m.commit().unwrap();

// Block #2
m.begin(&block_1, &block_2).unwrap();
let r = m.insert(&k1, MARFValue::from_value(&old_v));
let (_, root_hash_2) = Trie::read_root(m.borrow_storage_backend()).unwrap();
m.commit().unwrap();

// Block #3
m.begin(&block_2, &block_3).unwrap();
let r = m.insert(&k1, MARFValue::from_value(&new_new_v));
let (_, root_hash_3) = Trie::read_root(m.borrow_storage_backend()).unwrap();

21 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

https://github.com/blockstack/blockstack-core/blob/b2e456cef16e943cd5cbf2c0173eabf152a11659/src/chainstate/stacks/index/proofs.rs

m.commit().unwrap();

// Block #4
m.begin(&block_3, &block_4).unwrap();
let r = m.insert(&k1, MARFValue::from_value(&new_v));
let (_, root_hash_4) = Trie::read_root(m.borrow_storage_backend()).unwrap();
m.commit().unwrap();

// Block #5
m.begin(&block_4, &block_5).unwrap();
let r = m.insert(&k1, MARFValue::from_value(&another_v));
let (_, root_hash_5) = Trie::read_root(m.borrow_storage_backend()).unwrap();
m.commit().unwrap();

merkle_test_marf_key_value(m.borrow_storage_backend(), &block_5, &k1, &another_v, None);
merkle_test_marf_key_value(m.borrow_storage_backend(), &block_2, &k1, &old_v, None);

let root_to_block = m.borrow_storage_backend().read_root_to_block_table().unwrap();

// prepare a proof for the wrong root hash i.e. block2 instead of block5
println!("DEBUG: building proof5()");
let proof_5 = TrieMerkleProof::from_entry(m.borrow_storage_backend(), &k1, &old_v,

&block_2).unwrap();

//println!("DEBUG proof_5: {:?}", proof_5);

// Send proof to victim
// Verification succeeds when it should not
let triepath_4 = TriePath::from_key(&k1);
let marf_value_4 = MARFValue::from_value(&old_v);
let block_map = m.borrow_storage_backend().block_map.clone();
println!("DEBUG: verify()");
assert!(proof_5.verify(&triepath_4, &marf_value_4, &root_hash_5, &root_to_block));

}

22 | Blockstack Stacks Chain Process, Clarity VM, SIP 001 and SIP 007
Cryptography Review

Blockstack / NCC Group Confidential

	Executive Summary
	Synopsis
	Scope
	Blockchain audit
	MARF audit
	Testing Methodology and Key Findings
	Limitations
	Recommendation

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	Project Contacts
	SIP-001 and SIP-007 Testing Methodology
	Hiding Map Value from Proof Unit Test Case

