
Stacks Wallet 2.0 Security Assessment

Blockstack
November 17, 2020 – Version 1.0

Prepared for
Kyran Burraston
Mark Hendrickson

Prepared by
Shawn Fitzgerald
Ava Howell

Feedback on this project?
https://my.nccgroup.com/feedback/fd66a41b-2ce4-4514-a5e1-b546bca1876c

https://my.nccgroup.com/feedback/fd66a41b-2ce4-4514-a5e1-b546bca1876c

Executive Summary

Synopsis
During the fall of 2020, Blockstack engaged the NCC Group Cryptography Services team to conduct a security assess-
ment of the StacksWallet application. This application allows users to generate signing keys via Ledger or local storage
and initiate transactions on the chain. Additionally users can view funds and related data. The review was delivered by
2 consultants over 7 person-days.

Scope
NCC Group’s evaluation included the following Stacks Wallet 2.0 repository:

• https://github.com/blockstack/stacks-wallet/tree/release/stacking

This was used to build the electron application for testing.

Limitations
No significant limitations were encountered during testing and good coverage was achieved. Furthermore, the Block-
stack team was attentive in providing support throughout the project.

Key Findings
The assessment uncovered a number of medium and low security flaws. The most notable findings were:

• The Electron application configuration was missing a number of framework settings that are important for security.
• The Stacks Wallet contains external dependencies that were out of date and could lead to compromise of the
application.

• Storage of themnemonic lacked integrity protection, which could lead to unauthorized and undetectedmodification.

Strategic Recommendations
Electron application defense in depth The electron development framework has historically had security issues and
therefore it is important that care taken in the development and configuration of applications using the electron
framework. This includes ensuring that all dependencies are up to date and do not contain known vulnerabilities.
The application should follow common security configuration best practices, including setting web application protec-
tions such as correct output encoding and CORS policies. These should be periodically reviewed to ensure that the
applications follows the latest recommendations.

2 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Dashboard
Target Metadata Engagement Data
Name Stacks Wallet 2.0 Type Cryptography and application review
Type Desktop Client Method Code-assisted
Platforms Electron Dates 2020-11-09 to 2020-11-14
Environment Testing Consultants 2

Level of Effort 7 person-days

Targets
https://github.com/blockstack/stacks-wallet/tree/release/
stacking

9d2a2835777a649a14bdcd1bc36884f1bcc128dd

Finding Breakdown
Critical issues 0
High issues 0

Medium issues 2

Low issues 5
Informational issues 0
Total issues 7

Category Breakdown
Configuration 3

Cryptography 2

Data Validation 1

Patching 1

Key
Critical High Medium Low Informational

3 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 15.

Title ID Risk
Missing Electron Security Configuration 005 Medium
Out-of-Date Dependencies With Known Vulnerabilities 006 Medium
Non-Constant-Time Elliptic Curve Operations 001 Low
Overly Permissive Cross-Origin Resource Sharing (CORS) Policy 002 Low
Inconsistent Output Encoding 003 Low
Lack of Integrity Verification in Mnemonic Encryption 004 Low
Recommendations on Argon2 KDF Parameters 007 Low

4 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Finding Details
Finding Missing Electron Security Configuration

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-BLSK003-005

Category Configuration

Impact Overly permissive configuration of Electron may enable exploit chains that would have other-
wise been blocked.

Description The Blockstack wallet uses Electron, a framework for developing cross-platform native appli-
cations using web technology. Electron code presents unique security challenges compared
to traditional web code. Electron exposes a number of APIs which can break the traditional
“sandboxed web” security model. Application vulnerabilities such as cross-site scripting can
escalate to full remote code execution, depending on the configuration of Electron.

As part of the security review, NCC Group assessed the configuration of Electron in the Block-
stack wallet. While critical security issues such as the use of nodeIntegration and disabling
webSecurity were not present in the production configuration, a number of issues were
noted:

• Navigation is not disabled. It was discovered that the configuration of Electron allowed the
wallet to navigate to arbitrary origins. This is a violation of the principle of least privilege:
navigation is a privilege that is not required by the StacksWallet, so it should not be enabled.

• Sandboxing is not enabled. It was discovered that the sandbox configuration option was
not set in the production configuration. Ideally, sandbox should be enabled.

• Remote module in use: The electron remote module is considered deprecated for use in
the renderer process, as its APIs are dangerous in the event of a compromised renderer.
The remote module was found to be in use in stacks-wallet.

• No permission request handler registered: The Stacks Wallet doesn’t register a permis-
sion request handler using setPermissionRequestHandler. Without registering a per-
mission request handler, the application will silently approve all permission requests (such
as requests to access the microphone and video).

Recommendation Since the Stacks Wallet is a single-page React application, it should be possible and safe
to completely disable navigation using the webContents.on('will-navigate' event, and
calling event.preventDefault(). Note that in addition to implementing an event handler
that blocks navigation, it is also necessary to pass "disableBlockFeatures": "Auxclick"
to the webPreferences of the main Electron window, to prevent a middle-click bypass of the
navigation limitation.

The sandbox option should be used if it is determined that it does not break the Stacks Wallet
application. Ideally, the application should be refactored such that it can run in an Electron
window with sandbox: true.

Usage of the remotemodule in the renderer process should be removed and refactored out
into the main process.

A permission request handler should be implemented, which returns false by default, apply-
ing the principle of least privilege.

Going forward, the electronegativity tool can be used to audit the configuration of Elec-
tron in the Stacks Wallet.

5 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

https://github.com/doyensec/electronegativity/

Finding Out-of-Date Dependencies With Known Vulnerabilities

Risk Medium Impact: Medium, Exploitability: Undetermined

Identifier NCC-BLSK003-006

Category Patching

Location • Stacks Wallet NPM dependencies

Impact Outdated components with publicly known vulnerabilities could lead to compromise of the
Stacks Wallet application or assist in an exploit chain.

Description The Stacks Wallet relies on a number of external dependencies, which themselves have de-
pendencies. This means that the total dependency tree is quite large, despite a relative few
top-level dependencies of the Stacks Wallet application. Often, dependencies are updated to
remove important vulnerabilities. As part of the assessment, NCC Group ran the yarn audit
utility to check the status of every dependency in the tree. Two outdated dependencies were
noted:

• node-fetch (Low severity, Denial of Service)
– https://www.npmjs.com/advisories/1556

• node-forge (HIGH severity, prototype pollution)
– https://www.npmjs.com/advisories/1561

These known vulnerabilities may lead to a disruption in the Stacks Wallet or be used in a more
severe exploit chain.

Recommendation Update all dependencies using yarn upgrade, and run yarn audit again to verify that the
known vulnerabilities have been removed.

6 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Finding Non-Constant-Time Elliptic Curve Operations

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-BLSK003-001

Category Cryptography

Location • stacks-transactions.
• Underlying elliptic curve operations in the elliptic package.

Impact When using a software wallet, elliptic curve operationsmay leak information about the private
keys associated with a Blockstack wallet through timing side-channels.

Description The Stacks Wallet implementation allows two ways for users to manage their wallet private
keys and sign transactions. First, they can use the Ledger hardware wallet, which integrates
with the Stacks Wallet application. Second, they can choose to use the Stacks application itself
to manage their keys and sign transactions. In the latter case, the stacks-transactions
library is used to sign transactions. The underlying signing function is as follows:

// stacks-transactions/src/keys.ts L147
import { ec as EC } from 'elliptic';
// ...snip...
export function signWithKey(privateKey: StacksPrivateKey, input: string):

MessageSignature {
const ec = new EC('secp256k1');
const key = ec.keyFromPrivate(privateKey.data.toString('hex').slice(0, 64),

'hex');
const signature = key.sign(input, 'hex', { canonical: true });
const coordinateValueBytes = 32;
const r = leftPadHexToLength(signature.r.toString('hex'), coordinateValueBytes

* 2);
const s = leftPadHexToLength(signature.s.toString('hex'), coordinateValueBytes

* 2);
if (signature.recoveryParam === undefined || signature.recoveryParam === null)

{
throw new Error('"signature.recoveryParam" is not set');

}
const recoveryParam = intToHexString(signature.recoveryParam, 1);
const recoverableSignatureString = recoveryParam + r + s;
const recoverableSignature =

createMessageSignature(recoverableSignatureString);
return recoverableSignature;

}

Note that for this software signing, the Javascript elliptic library is used for ECDSA over
curve secp256k1. A common flaw in ECDSA implementations is side-channel leaks. A focus
of cryptographic literature and study in recent years, side channel leaks occur when some
computation over secret data leaks into the world through physical channels which are not
defined by the abstract model of the software - one such example is timing leaks. Timing
attacks have caused severe breaks in cutting-edge cryptographic implementations1,.2 In gen-
eral, a requirement for cryptographic implementations to avoid being broken by timing leaks
is that their computations which involve secret data must not have data-dependent execution
time, in other words they must be constant-time.
1https://cryptoservices.github.io/cryptography/attacks/2019/01/17/cat.html
2https://www.nccgroup.trust/us/our-research/technical-advisory-return-of-the-hidden-number-problem/

7 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

The elliptic library is not constant-time, and there are several immediately apparent timing
leakages: first, for secp256k1, the implementation of scalar multiplication is in JavaScript,
which tends to have innate issues with constant-time cryptography. Second, private scalars
are represented using bn.js, which is inherently non-constant-time as it uses non-modular
big integers, so operationswith private scalars such as the private key itself or the per-signature
nonce k will leak information about their values. Lastly, the implementation of elliptic curve
scalar multiplication itself in elliptic.js for secp256k1 uses the wNAF method, which is
known to be leak information about the scalar through side channels.

The practical impact of this finding is limited, but it may be more impactful if the user who is
using the Stacks wallet is doing so on a machine that has multiple trust domains, such as a
shared server.

Recommendation A simple solution is to limit the use of software wallets, or emphasize the security tradeoffs
thereof. The timing leak can be removed from the software wallet by using an implementation
of ECDSA which is known to be constant-time, such as the well-tested libsecp256k1 which
is used in the Bitcoin core project ,3 which can be compiled to WebAssembly to be run in the
Stacks wallet.

3https://github.com/bitcoin-core/secp256k1

8 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Finding Overly Permissive Cross-Origin Resource Sharing (CORS) Policy

Risk Low Impact: Low, Exploitability: None

Identifier NCC-BLSK003-002

Category Configuration

Location access-control-allow-origin header in interactions with stacks-node-api.krypton.b
lockstack.org

Impact An attacking site could abuse the application’s weak CORS policy to steal user data or perform
dangerous actions in the context of the user’s account.

Description Cross-Origin Resource Sharing (CORS) is a browser standard which allows for the resources
or functionality of a web application to be accessed by other web pages originating from a
different domain. Before CORS, browsers had a number of strict limitations on the ability
of different web applications to communicate with each other. For example, an application
could send a request to an application on a different domain, but could not read the response,
making “web API” functionality impossible.

CORS makes safe cross-domain requests possible by allowing applications to opt-in to cross-
domain communication. If an application wants to allow this type of communication, it can
use the following CORS headers:

• Access-Control-Allow-Origin: a domain (or wildcard) which the application wants to
allow communication from

By returning these headers, the responding application explicitly states that cross-domain
communication is acceptable. The user’s browser checks that the returned values are valid;
if so, the browser permits the requesting application to send a cross-domain request and to
read the response.

Caution must be taken when defining these header values. Normally, the Same-Origin Policy
prevents most cross-domain requests. By returning CORS headers, that protection is severely
weakened. An attacking site could abuse this weakness to steal user data or perform danger-
ous actions.

The server returns a permissive CORS policy, this could allow any site to make cross origin
requests with the Electron application backend:

access-control-allow-origin: *
access-control-allow-headers: origin, content-type
access-control-allow-methods: POST, GET, OPTIONS

It should be noted that within the context of the Stacks Wallet there is little chance of ex-
ploitability because there are not sensitive values such as cookies or API tokens that could be
returned from cross-origin requests. Nevertheless, good defense in depth would be to limit
interactions from only whitelisted and trusted sources.

Recommendation Access-Control headers should be limited to the minimal set of permissions necessary to
perform cross-domain functionality. First, Access-Control headers should only be returned
for specific, necessary resources or routes, rather than applied globally. For each route,
explicitly set the relevant Access-Control headers to allow only the specific methods, headers,
or credentials which are necessary.

9 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

For the Access-Control-Allow-Origin header, domains should be specified using a whitelist.
Only domains which are absolutely necessary for cross domain communication should be
included.4

In the case of the Blockstack wallet, this will likely only be stacks-node-api.krypton.bloc
kstack.org and related trusted sites.

4https://www.electronjs.org/docs/tutorial/security#6-define-a-content-security-policy

10 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Finding Inconsistent Output Encoding

Risk Low Impact: None, Exploitability: None

Identifier NCC-BLSK003-003

Category Data Validation

Location GET and POST requests to stacks-node-api.krypton.blockstack.org

Impact A lack of output encoding increases the risk of an exploitable cross-site scripting (XSS) vulner-
ability.

Description Cross-site scripting vulnerabilities allow a malicious agent to inject attacker controlled script
into a user session. This can allow the attacker to carry out actions in the context of the user or
steal passwords and other sensitive data. In the context of Electron applications XSS vulner-
abilities are even more serious as they can execute low level Node.js API functions resulting
in remote code execution vulnerabilities (RCE) in the context of the victim user machine.5
Although no exploitable XSS vulnerabilities had been found during the assessment, there
was a lack of output encoding in returned JSON objects. The following example interactions
demonstrate this:

POST /v2/contracts/call-read/ST000000000000000000002AMW42H/pox/get-stacker-
infofagaf%3ca%3eerlfvxurij7 HTTP/1.1

Host: stacks-node-api.krypton.blockstack.org
...
Accept-Language: en-US

///

HTTP/1.1 200 OK
Date: Wed, 11 Nov 2020 06:58:09 GMT
Content-Type: application/json
...
Content-Length: 94

{"okay":false,"cause":"Unchecked(UndefinedFunction(\"get-stacker-infofagaf
<a>erlfvxurij7\"))"}

5https://medium.com/dealeron-dev/electron-and-xss-e9ecef1c7325

11 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

GET /extended/v1/address/ST2B191A71QWSH39V2R28W7WMV8GCTNFTQAM5TEMYv1qph%3cimg%20s
rc%3da%20onerror%3dalert(1)%3eotlmd/transactions HTTP/1.1

Host: stacks-node-api.krypton.blockstack.org
...
Accept-Language: en-US

///

HTTP/1.1 400 Bad Request
Date: Wed, 11 Nov 2020 06:53:19 GMT
Content-Type: application/json; charset=utf-8
...
Strict-Transport-Security: max-age=15724800; includeSubDomains

{"error":"invalid STX address \"ST2B191A71QWSH39V2R28W7WMV8GCTNFTQAM5TEMYv1qph
otlmd\""}

The above example, are not currently exploitable because the content type has been set to
application/json and other options are not allowed. That being said, there is still a risk of
type-0 or DOM based XSS vulnerabilities.

Recommendation Except for alphanumeric characters, all values should be hex encoded using the \uXXXX Uni-
code escaping format. In addition to this a good defense in depth recommendation is to
perform input validation as well as ensuring that all user-controlled parameters are JavaScript
encoded when passed within an object back to the user.

12 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Finding Lack of Integrity Verification in Mnemonic Encryption

Risk Low Impact: High, Exploitability: Medium

Identifier NCC-BLSK003-004

Category Cryptography

Location /app/crypto/key-encryption.ts

Impact A malicious entity can modify the encrypted mnemonic value without detection.

Description The encryptMnemonic and decryptMnemonic functions encrypt the user mnemonic and
store it on disk using AES-CBC. This cryptographic mode of operation does not include in-
tegrity protection, and therefore the application cannot determine if this value has been
modified on disk. This could allow an attacker to make modifications to the mnemonic such
as reordering attacks or to fully swap mnemonics in an undetected manner. Although it is
not likely that this could result in attacker controlled transactions, it could result in bogus
transactions, since different signing keys would be derived.

Recommendation Transition to a cryptographic mode of operation that supports encryption and integrity in
one operation. As an example, AES-GCM is an authentication encryption algorithm that is
well vetted and widely supported.

13 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Finding Recommendations on Argon2 KDF Parameters

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-BLSK003-007

Category Configuration

Location stacks-wallet/app/crypto/key-generation.ts

Impact Not fully utilizing the Argon2 configuration parameters would allow for for efficient brute force
attacks on the user’s stored mnemonic.

Description The Argon2 key derivation function is used for deriving a wrapping key from the user supplied
password. Argon2 can be used for both password storage and key derivation and is highly
configurable, depending on the environment. The Stacks Wallet application uses the argon2
-browser library that appears to be configured for password storage, which is not ideal for
use case of non-interactive key derivation. This can result in less than optimal configuration
parameters.

Recommendation Although parameters are not fixed as they depend on the environment, required execution
time and target architecture; there are number of common parameter choices. The libs
odium documentation,6 can provide a good starting point from which execution times can
be derived. The current recommendation is that highly sensitive data and non-interactive
operations, key derivation will take about 3.5 seconds on a 2.8 Ghz Core i7 CPU and requires
1024 MiB of dedicated RAM.

6https://libsodium.gitbook.io/doc/password_hashing/default_phf

14 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

15 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

16 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

Appendix B: Project Contacts
The team from NCC Group has the following primary members:

• Shawn Fitzgerald — Consultant
shawn.fitzgerald@nccgroup.com

• Ava Howell — Consultant
ava.howell@nccgroup.com

• Javed Samuel — Practice Director, Cryptography Services
javed.samuel@nccgroup.com

The team from Blockstack has the following primary members:

• Kyran Burraston — Blockstack
kyran@blockstack.com

• Mark Hendrickson — Blockstack
mark@blockstack.com

17 | Blockstack Stacks Wallet 2.0 Security Assessment Blockstack / NCC Group Confidential

mailto:shawn.fitzgerald@nccgroup.com
mailto:ava.howell@nccgroup.com
mailto:javed.samuel@nccgroup.com
mailto:kyran@blockstack.com
mailto:mark@blockstack.com

	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	Project Contacts

